Métodos de Acceso Los ISP involucran a un gran número de tecnologías para permitir al usuario conectarse a sus redes. Para los usuarios comunes y empresas pequeñas, las opciones más populares incluyen dial-up, DSL (conocido como Asymmetric Digital Subscriber Line o ADSL), banda ancha inalámbrica, cable módem, Fiber To The Home (FTTH), y la Red Digital de Servicios Integrados (ISDN). Para clientes con requerimentos mayores, como medianas o grandes empresas, se ofrece DSL (SHDSL o ADSL), Ethernet, Metro Ethernet, Gigabit Ethernet, Frame Relay, ISDN (BRI ó PRI), ATM, Internet satelital y la Red Óptica Sincrona (SONET), las mas usadas, entre otras. Conexiones típicas para usuarios comunes:
Los hosting ISP son servicios que operan servidores de Internet, permitiéndole a organizaciones e individuos subir contenido a ésta. Existen distintos niveles de servicios y varios tipos de servicios ofrecidos.
Este tipo de ISP ofrecen servidores, servidors cloud, VPS, incluso servidors físicos donde los clientes pueden ejecutar sus propios programas. Estos tipos de ISP necesitan muchos recursos físicos y virtuales para poder ejecutarse optimizadamente, por lo cual el ancho de banda consumido también genera un costo.
El término red inalámbrica(Wireless network en inglés) es un término que se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagneticas. La transmisión y la recepción se realizan a través de puertos.
Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho mas exigente y robusta para evitar a los intrusos.
Tipos
Cobertura y estándares.
Según su cobertura, se pueden clasificar en diferentes tipos:
Wireless Personal Area Network
En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.
Wireless Local Area Networ
En las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (del inglés, High Performance Radio LAN), un estándar del grupo ETSI, o tecnologías basadas en Wi-Fi, que siguen el estándar IEEE 802.11 con diferentes variantes.
Wireless Metropolitan Area Network
Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).
Wireless Wide Area Network
Una WWAN difiere de una WLAN (wireless local area network) en que usa tecnologías de red celular de comunicaciones móviles como WiMAX (aunque se aplica mejor a Redes WMAN), UMTS (Universal Mobile Telecommunications System), GPRS, EDGE, CDMA2000, GSM, CDPD, Mobitex, HSPA y 3G para transferir los datos. También incluye LMDS y Wi-Fi autónoma para conectar a internet.[1]
Aplicaciones
Las bandas más importantes con aplicaciones inalámbricas, del rango de frecuencias que abarcan las ondas de radio, son la VLF (comunicaciones en navegación y submarinos), LF (radio AM de onda larga), MF (radio AM de onda media), HF (radio AM de onda corta), VHF (radio FM y TV), UHF (TV).
Mediante las microondas terrestres, existen diferentes aplicaciones basadas en protocolos como Bluetooth o ZigBee para interconectar ordenadores portátiles, PDAs, teléfonos u otros aparatos. También se utilizan las microondas para comunicaciones con radares (detección de velocidad u otras características de objetos remotos) y para la televisión digital terrestre.
Las microondas por satélite se usan para la difusión de televisión por satélite, transmisión telefónica a larga distancia y en redes privadas, por ejemplo.
Los infrarrojos tienen aplicaciones como la comunicación a corta distancia de los ordenadores con sus periféricos. También se utilizan para mandos a distancia, ya que así no interfieren con otras señales electromagnéticas, por ejemplo la señal de televisión. Uno de los estándares más usados en estas comunicaciones es el IrDA (Infrared Data Association). Otros usos que tienen los infrarrojos son técnicas como la termografía, la cual permite determinar la temperatura de objetos a distancia.
REDES CABLEADAS
Las redes alámbricas proporcionan a los usuarios una buena seguridad y la capacidad de mover muchos datos de manera rápida y efectiva. Además son más rápidas que las redes inalambricas y son mas económicas de implementar.
Sin embargo el costo de las redes alámbricas puede crecer entre más computadoras séan y mas retiradas se encuentren entre ellas. Además, a menos que estés construyendo una casa o edificio nuevos y planeés con anticipación la instalación del cableado, tendrás que perforar paredes y conformarte con una instalación visible.
Si tan solo planeas conectar dos computadoras, lo único que necesitarás es una tarjeta de red (NIC) en cada computadora y el cable para conectarlas. El cable más comunmente utilizado es el UTP Categoría 5 (Unshielded Twisted Pair). Puedes comprar el cable preconstruido con sus conectores o puedes hacerlo tu mismo siguiendo nuestro tutorial de cableado de redes.
REDES SATELITALES
Un satélite puede definirse como un repetidor radioeléctrico ubicado en el espacio, que recibe señales generadas en la tierra, las amplifica y las vuelve a enviar a la tierra, ya sea al mismo punto donde se origino la señal u otro punto distinto.
Una red satelital consiste de un transponder (dispositivo receptor-transmisor), una estación basada en tierra que controlar su funcionamiento y una red de usuario, de las estaciones terrestres, que proporciona las facilidades para transmisión y recepción del tráfico de comunicaciones, a través del sistema de satélite.
Es un dispositivo que realiza la función de recepción y transmisión. Las señales recibidas son amplificadas antes de ser retransmitidas a la tierra. Para evitar interferencias les cambia la frecuencia.
Estaciones terrenas
Las estaciones terrenas controlan la recepción con el satélite y desde el satélite, regula la interconexión entre terminales, administra los canales de salida, codifica los datos y controla la velocidad de transferencia.
Consta de 3 componentes:
Estación receptora: Recibe toda la información generada en la estación transmisora y retransmitida por el satélite.
Antena: Debe captar la radiación del satélite y concentrarla en un foco donde esta ubicado el alimentador. Una antena de calidad debe ignorar las interferencias y los ruidos en la mayor medida posible.
Estos satélites están equipados con antenas receptoras y con antenas transmisoras. Por medio de ajustes en los patrones de radiación de las antenas pueden generarse cubrimientos globales, cubrimiento a solo un país (satélites domésticos), o conmutar entre una gran variedad de direcciones.
Estación emisora: Esta compuesta por el transmisor y la antena de emisión.
La potencia emitida es alta para que la señal del satélite sea buena. Esta señal debe ser captada por la antena receptora. Para cubrir el trayecto ascendente envía la información al satélite con la modulación y portadora adecuada.
Como medio de transmisión físico se utilizan medios no guiados, principalmente el aire. Se utilizan señales de microondas para la transmisión por satélite, estas son unidireccionales, sensibles a la atenuación producida por la lluvia, pueden ser de baja o de alta frecuencia y se ubican en el orden de los 100 MHz hasta los 10 GHz
CLASIFICACION DE LAS TRANSMISIONES SATELITALES
Las transmisiones de satélite se clasifican como bus o carga útil. La de bus incluye mecanismos de control que apoyan la operación de carga útil. La de carga útil es la información del usuario que será transportada a través del sistema.
En el caso de radiodifusión directa de televisión vía satélite el servicio que se da es de tipo unidireccional por lo que normalmente se requiere una estación transmisora única, que emite los programas hacia el satélite, y varias estaciones terrenas de recepción solamente, que toman las señales provenientes del satélite. Existen otros tipos de servicios que son bidireccionales donde las estaciones terrenas son de transmisión y de recepción.
Uno de los requisitos más importantes del sistema es conseguir que las estaciones sean lo más económicas posibles para que puedan ser accesibles a un gran numero de usuarios, lo que se consigue utilizando antenas de diámetro chico y transmisores de baja potencia. Sin embargo hay que destacar que es la economía de escala (en aquellas aplicaciones que lo permiten) el factor determinante para la reducción de los costos.
Modelos de enlace del sistema satelital
Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un transponder satelital y una bajada.
Modelo de subida
El principal componente dentro de la sección de subida, de un sistema satelital, es el transmisor de la estación terrena. Un típico transmisor de la estación terrena consiste de un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta potencia (HPA) y algún medio para limitar la banda del espectro de salida (un filtro pasa-banda de salida).
El modulador de IF convierte las señales de banda base de entrada a una frecuencia intermedia modulada e FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa-banda) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de onda progresiva.
Modelo de subida del satélite.
Transponder
Un típico transponer satelital consta de un dispositivo para limitar la banda de entrada (BPF), un amplificador de bajo ruido de entrada (LNA), un translador de frecuencia, un amplificador de potencia de bajo nivel y un filtro pasa-bandas de salida.
El transponder es un repetidor de RF a RF. Otras configuraciones de transponder son los repetidores de IF, y de banda base, semejantes a los utilizados en los repetidores de microondas.
El BPF de entrada limita el ruido total aplicado a la entrada del LNA (un dispositivo normalmente utilizado como LNA, es un diodo túnel).
La salida del LNA alimenta un translador de frecuencia (un oscilador de desplazamiento y un BPF), que se encarga de convertir la frecuencia de subida de banda alta a una frecuencia de bajada de banda baja.
El amplificador de potencia de bajo nivel, que es comúnmente un tubo de ondas progresivas (TWT), amplifica la señal de RF para su posterior transmisión por medio de la bajada a los receptores de la estación terrena.
También pueden utilizarse amplificadores de estado sólido (SSP), los cuales en la actualidad, permiten obtener un mejor nivel de linealidad que los TWT.
La potencia que pueden generar los SSP, tiene un máximo de alrededor de los 50 Watts, mientras que los TWT pueden alcanzar potencias del orden de los 200 Watts.
Transponder del satélite.
Modelo de bajada
Un receptor de estación terrena incluye un BPF de entrada, un LNA y un convertidor de RF a IF. El BPF limita la potencia del ruido de entrada al LNA. El LNA es un dispositivo altamente sensible, con poco ruido, tal como un amplificador de diodo túnel o un amplificador parametrico. El convertidor de RF a IF es una combinación de filtro mezcador/pasa-bandas que convierte la señal de RF a una frecuencia de IF.
Satélites orbitales
Los satélites orbitales o también llamados no sincronos, giran alrededor de la Tierra en un patrón elíptico o circular de baja altitud. Si el satélite esta girando en la misma dirección que la rotación de la Tierra y a una velocidad angula superior que la de la Tierra, la órbita se llama órbita progrado. Si el satélite esta girando en la dirección opuesta a la rotación de la Tierra, o en la misma dirección, pero a una velocidad angular menor a la de la Tierra, la órbita se llama órbita retrograda.
De esta manera, los satélites no sincronos esta alejándose continuamente o cayendo a tierra y no permanecen estacionarios en relación a ningún punto en particular de la Tierra. Por lo tanto los satélites no sincronos se tiene que usar cuando están disponibles, lo cual puede ser un corto periodo de tiempo, como 15 minutos por órbita.
Otra desventaja de los satélites orbitales es la necesidad de equipo complicado y costoso para rastreo en las estaciones terrestres. Cada estación terrestre debe localizar el satélite conforme esta disponible en cada órbita y después unir sus antenas al satélite y localizarlo cuando pasa por arriba. Una gran ventaja de los satélites orbitales es que los motores de propulsión no se requieren a bordo de los satélites para mantenerlos en sus órbitas respectivas.
Otros parámetros característicos de los satélites orbitales, son el apogeo y perigeo. El apogeo es la distancia más lejana, de la Tierra, que un satélite orbital alcanza, el perigeo es la distancia mínima; la línea colateral, es la línea que une al perigeo con el apogeo, en el centro de la Tierra.
Se observa en la imagen a continuación, que la órbita del satélite la cual es altamente elíptica, con un apogeo de aproximadamente 40000 km y un perigeo de aproximadamente 1000 km.
Satélites geoestacionarios
Los satélites geoestacionarios o geosincronos son satélites que giran en un patrón circular, con una velocidad angular igual a la de la Tierra. Por lo tanto permanecen en una posición fija con respecto a un punto específico en la Tierra. Una ventaja obvia es que están disponibles para todas las estaciones de la Tierra, dentro de su sombra, el 100% de las veces.
La sombra de un satélite incluye a todas las estaciones de la Tierra que tienen un camino visible a el y están dentro del patrón de radiación de las antenas del satélite. Una desventaja obvia es que a bordo, requieren de dispositivos de propulsión sofisticados y pesados para mantenerlos fijos en una órbita. El tiempo de órbita de un satélite geoesincrono es de 24 h, igual que la Tierra.
Parámetros típicos de la órbita geoestacionaria.
Es posible calcular algunos parámetros típicos de la órbita geoestacionaria, tales como la altura del satélite, o la velocidad del mismo, partiendo de las leyes básicas de la Física.
Como es sabido un satélite geoestacionario tiene un periodo de rotación igual al de la Tierra, por lo tanto deberemos saber con exactitud dicho periodo de rotación. Para ello se considera el día sidereo, que es el tiempo de rotación de la Tierra medido con respecto a una estrella lejana y que difiere del día solar o medido con respecto al sol.
La duración de este día sidereo es de 23h 56 min. 4.1seg, y es el tiempo que se utiliza para los cálculos.
Fuerzas sobre el Satélite.
Existen tres trayectos que un satélite puede tomar, conforme gira alrededor de la Tierra:
Cuando el satélite gira en una órbita arriba del ecuador, se llama órbita ecuatorial.
Cuando el satélite gira en una órbita que lo lleva arriba de los polos norte y sur, se llama órbita polar.
Cualquier otro trayecto orbital se llama órbita inclinada.
Un nodo ascendente, es el punto en donde la órbita cruza el plano ecuatorial de sur a norte; un nodo descendente, es el punto donde la órbita cruza el plano ecuatorial de norte a sur. La línea que une a los nodos ascendentes y descendentes por el centro de la Tierra, se llama línea de nodos.
Orbitas del satélite.
LATITUD-LONGITUD
Como primera medida para describir el paso de un satélite en órbita, se debe designar un punto de observación o un punto de referencia. Este punto podrá tratarse de un lugar distante, tal como una estrella, o un punto en la superficie de la tierra, o también el centro de la Tierra, que a su vez el centro de gravedad del cuerpo principal.
En caso de tomar como lugar de observación un punto en la superficie de la Tierra, deberemos estar en condiciones de localizar dicho punto mediante algún método.
Este método de localización es a través del meridiano. Estas líneas conforman un cuadriculado sobre la superficie de la Tierra. Las líneas verticales se denominan Longitud y las líneas horizontales se denominan Latitud.
Las líneas de Longitud se extienden desde el Polo Norte al Polo Sur, es decir que son círculos iguales al contorno de la Tierra que se interceptan en los polos. Se ha definido por convención, como primer meridiano o Longitud cero grados, al meridiano que pasa por la ciudad de Greenwich, tomando el nombre de dicha ciudad.
En total son 360 líneas, lo que equivale a 18 círculos completos. De esta manera se componen los 360 grados de Longitud, partiendo desde la línea de Longitud 00 hacia el Este.
Las líneas de Latitud están conformadas por 180 círculos paralelos y horizontales, siendo el círculo mayor el ubicado en la línea del Ecuador denominada Latitud cero grados.
De esta forman existen 900 hacia el hemisferio Norte, denominados Latitud Positiva y 900 hacia el hemisferio Sur, denominados Latitud Negativa.
Por lo tanto mediante la intersección de las coordenadas de Latitud y Longitud podremos localizar un punto que este sobre la superficie de la Tierra.
En cuanto a un satélite, este se encuentra en el espacio, y su posición puede ser estimada con una Latitud, una Longitud y una altura. Dicha altura estará referida a un punto sobre la Tierra que es la intersección de la recta que une al satélite con el centro de la Tierra y la superficie terrestre.
Para orientar una antena desde una estación terrena hacia un satélite, es necesario conocer el ángulo de elevación y azimut. Estos se llaman ángulos de vista.
Angulo de elevación
El ángulo de elevación es el ángulo formado entre la dirección de viaje de una onda radiada desde una antena de estación terrena y la horizontal, o el ángulo de la antena de la estación terrena entre el satélite y la horizontal. Entre más pequeño sea el ángulo de elevación, mayor será la distancia que una onda propagada debe pasar por la atmósfera de la Tierra. Como cualquier onda propagada a través de la atmósfera de la Tierra, sufre absorción y, también, puede contaminarse severamente por el ruido. De esta forma, si el ángulo de elevación es demasiado pequeño y la distancia de la onda que esta dentro de la atmósfera de la Tierra es demasiado larga, la onda puede deteriorarse hasta el grado que proporcione una transmisión inadecuada. Generalmente, 5º es considerado como el mínimo ángulo de elevación aceptable.
Azimut
Azimut se define como el ángulo de apuntamiento horizontal de una antena. Se toma como referencia el Norte como cero grados, y si continuamos girando en el sentido de las agujas del reloj, hacia el Este, llegaremos a los 900 de Azimut.
Hacia el Sur tendremos los 1800 de Azimut, hacia el Oeste los 2700 y por ultimo llegaremos al punto inicial donde los 3600 coinciden con los 00 del Norte.
El ángulo de elevación y el azimut, dependen ambos, de la latitud de la estación terrena, así como el satélite en órbita.
CLASIFICACIONES DE LOS SATELITES
Hay dos clasificaciones principales para los satélites de comunicaciones: hiladores (spinners) y satélites estabilizadores de tres ejes.
Los satélites spinners, utilizan el movimiento angular de su cuerpo giratorio para proporcionar una estabilidad de giro.
Con un estabilizador de tres ejes, el cuerpo permanece fijo en relación a la superficie de la Tierra, mientras que el subsistema interno proporciona una estabilización de giro.
Clases de satélites: (a) hilador; (b) tres ejes estabilizados.
Los satélites geosincronos deben compartir un espacio y espectro de frecuencia limitados, dentro de un arco especifico en una órbita geoestacionaria. A cada satélite de comunicación se asigna una longitud en el arco geoestacionario, aproximadamente a 36000 km, arriba del ecuador. La posición en la ranura depende de la banda de frecuencia de comunicación utilizada. Los satélites trabajando, en o casi la misma frecuencia, deben estar lo suficientemente separados en el espacio para evitar interferir uno con otro. Hay un limite realista del numero de estructuras satelitales que pueden estar estacionadas, en un área especifica del espacio.
La separación espacial requerida depende de las siguientes variables:
Ancho de haz y radiación del lóbulo lateral de la estación terrena y antenas del satélite.
Generalmente se requieren 3 a 6º de separación espacial dependiendo de las variables establecidas anteriormente.
Separación espacial de satélites en una órbita geosincrona.
Las frecuencias de portadora, más comunes, usadas para las comunicaciones por satélite, son las bandas 6/4 y 14/12 GHz. El primer numero es la frecuencia de subida (ascendente, estación terrena a transponder) y el segundo numero es la frecuencia de bajada(descendente, transponder a estación terrena). Entre mas alta sea la frecuencia de la portadora, más pequeño es el diámetro requerido de la antena para una ganancia especifica.
La mayoría de los satélites domésticos utilizan la banda de 6/4 GHZ, esta banda también se usa extensamente para los sistemas de microondas terrestres, por lo que se debe tener cuidado cuando se diseña una red satelital para evitar interferencias con los enlaces de microondas establecidas. Ciertas posiciones en la órbita geosincrona tienen más demanda que otras.
El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de transmisión.
Las transmisiones se realizan habitualmente empleando ondas electromagnéticas que se propagan a través del canal.
A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío.
Clasificación
Dependiendo de la forma de conducir la señal a través del medio, los medios de transmisión se pueden clasificar en dos grandes grupos, medios de transmisión guiados y medios de transmisión no guiados.
Según el sentido de la transmisión podemos encontrarnos con 3 tipos diferentes: Simplex, Half-Duplex y Full-Duplex.
También los medios de transmisión se caracterizan por utilizarse en rangos de frecuencia de trabajo diferentes.
Los medios de transmisión guiados están constituidos por un cable que se encarga de la conducción (o guiado) de las señales desde un extremo al otro.
Las principales características de los medios guiados son el tipo de conductor utilizado, la velocidad máxima de transmisión, las distancias máximas que puede ofrecer entre repetidores, la inmunidad frente a interferencias electromagnéticas, la facilidad de instalación y la capacidad de soportar diferentes tecnologías de nivel de enlace.
La velocidad de transmisión depende directamente de la distancia entre los terminales, y de si el medio se utiliza para realizar un enlace punto a punto o un enlace multipunto. Debido a esto los diferentes medios de transmisión tendrán diferentes velocidades de conexión que se adaptarán a utilizaciones dispares.
Dentro de los medios de transmisión guiados, los más utilizados en el campo de las comunicaciones y la interconexión de computadoras son:
El par trenzado: Consiste en un par de hilos de cobre conductores cruzados entre sí, con el objetivo de reducir el ruido de diafonía. A mayor número de cruces por unidad de longitud, mejor comportamiento ante el problema de diafonía.
El UTP son las siglas de Unshielded Twisted Pair. Es un cable de pares trenzado y sin recubrimiento metálico externo, de modo que es sensible a las interferencias. Es importante guardar la numeración de los pares, ya que de lo contrario el Efecto del trenzado no será eficaz disminuyendo sensiblemente o incluso impidiendo la capacidad de transmisión. Es un cable Barato, flexible y sencillo de instalar. Las aplicaciones principales en las que se hace uso de cables de par trenzado son:
Bucle de abonado: Es el último tramo de cable existente entre el telefóno de un abonado y la central a la que se encuentra conectado. Este cable suele ser UTP Cat.3 y en la actualidad es uno de los medios más utilizados para transporte de banda ancha, debido a que es una infraestructura que esta implantada en el 100% de las ciudades.
Redes LAN: En este caso se emplea UTP Cat.5 o Cat.6 para transmisión de datos.Consiguiendo velocidades de varios centenares de Mbps. Un ejemplo de este uso lo constituyen las redes 10/100/1000BASE-T.
El cable coaxial: Se compone de un hilo conductor, llamado núcleo, y un mallazo externo separados por un dieléctrico o aislante.
Tanto la transmisión como la recepción de información se lleva a cabo mediante antenas. A la hora de transmitir, la antena irradia energía electromagnética en el medio. Por el contrario en la recepción la antena capta las ondas electromagnéticas del medio que la rodea.
La configuración para las transmisiones no guiadas puede ser direccional y omnidireccional.
En la direccional, la antena transmisora emite la energía electromagnética concentrándola en un haz, por lo que las antenas emisora y receptora deben estar alineadas.
En la omnidireccional, la radiación se hace de manera dispersa, emitiendo en todas direcciones pudiendo la señal ser recibida por varias antenas. Generalmente, cuanto mayor es la frecuencia de la señal transmitida es más factible confinar la energía en un haz direccional.
La transmisión de datos a través de medios no guiados, añade problemas adicionales provocados por la reflexión que sufre la señal en los distintos obstáculos existentes en el medio. Resultando más importante el espectro de frecuencias de la señal transmitida que el propio medio de transmisión en sí mismo.
Según el rango de frecuencias de trabajo, las transmisiones no guiadas se pueden clasificar en tres tipos: radio, microondas y luz (infrarrojos/láser).
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente, con esta fórmula es difícil la corrección de errores causados por deficiencias de línea (TV).
Half-Duplex
En este modo la transmisión fluye cada vez, solo una de las dos estaciones del enlace punto a punto puede transmitir. Este método también se denomina en dos sentidos alternos (walkie-talkie).
Full-Duplex
Es el método de comunicación más aconsejable puesto que en todo momento la comunicación puede ser en dos sentidos posibles, es decir, que las dos estaciones simultáneamente pueden enviar y recibir datos y así pueden corregir los errores de manera instantánea y permanente.
Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolosTCP/IP, garantizando que las redes físicas heterogéneas que la componen funcionen como una red lógica única, de alcance mundial. Sus orígenes se remontan a 1969, cuando se estableció la primera conexión de computadoras, conocida como ARPANET, entre tres universidades en CaliFOrnia y una en Utah, Estados Unidos.
Uno de los servicios que más éxito ha tenido en Internet ha sido la World Wide Web (WWW, o "la Web"), hasta tal punto que es habitual la confusión entre ambos términos. La WWW es un conjunto de protocolos que permite, de forma sencilla, la consulta remota de archivos de hipertexto. Ésta fue un desarrollo posterior (1990) y utiliza Internet como medio de transmisión.